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CHARACTERISTICSOF THE CONVAIR XF-92A

DELTA-WING AIRPLANE

By Euclid C. Holleman

SUMMARY

part of the flight research progrsm
XF-~ delta-wingresearch atiplane, rudder

conductedwith the Convair
pulse maneuvers were obtained

at an altitude of about 30,000-feet-overa Mach number range of 0.52
tO 0.92. Tests were made with and without a wing fence.

By analyzing these maneuvers the characteristicsof the airplane
transient,airplane stabilityderivatives,and frequency-responsechar-
acteristicswere measured. The airplane handling qualitieswere improved
by the addition of wing fences. The agreementbetween experimentaland
calculatedstabilityderivativeswas fair to poor. However by using
transfer-functionequations from the lateral equations of motion and the
experimentalstabilityderivatives,frequency responses were calculated
that compared favorablywith those determinedby Fourier

INTRODUWTON

transformation.

Measurementsof the dynamic lateral response characteristicsof the
airplane were made at am’altitude of about 30,000 feet and over a Mach
number range of 0.52 to 0.92 as part of a flight investigationusing
the XF-$12Adelta-wing airplane. Some dynamic lateral response data were
also obtained while the effects of wing fences on the airplane longitu-
dinal characteristicswere being investigated. Results of the longitu-
dinal stability investigationwith and without wing fences are presented
in reference 1. The results of simultaneouslateral tests on the air-
plane are reported in reference 2, and results of dynamic longitudinal
tests are presented in reference 3.

During this phase of the XF-9 test
behavior of the airplane was investigated

CONFIDENTIAL
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response to abrupt rudder pulse disturbances. Worn the recording of each
of these maneuvers it was possible
stabilityderivativesand also the
the airplane.

to obtain some of the more important
frequency-responsecharacteristicsof

SYMEOLS AND COEFFICIENTS

at transverse

b wing span,

acceleration,g units

ft

5 pressure altitude, ft

c1 rolling-momentcoefficient

Cn yawing-momentcoefficient

Cy side-forcecoefficient

i)c.

acn
c
nP=~

2V

acn
c nr ‘g
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CY8
r

1X

lZ

%

M

t

v

.%x
abr

moment of inertia about longitudinalstability axis,

Slug-ftz

moment of inertia about vertical stabilityaxis, slug-ft2

product of inertia relative to the stabilityaxis, slug-ft2

Mach number

time, sec

true velocity, ft/sec

angle of attack, deg

sideslip angle, radians or deg

rudder control position, deg

angle between reference axis and principal axis, positive
when reference axis is above principal axis at nose of
airplsme, deg

damping ratio

roll angle, radians

roll velocity, radians/see

phase angle, deg

yaw angle, radians
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i yaw velocity, radians/see

0 frequency, radians/see

% undamped natural frequency,radians/see

Subscripts:

b body aXiS

wing

AIRPLANE

The Convair XF-~A airplane is a single-placefighter-typedelta-
airplane powered by a J33-A-2$Jturbojet engine with afterburner.

Physical characteristicsof the airplane are presented in table I and
a three-view sketch is presented in figure 1. For some of the tests a
fence was located at the 0.607 semispan station of the wing. The fence
height was equal to the wing thickness at the 0.607 semispan station
and extended around the wing leading edge as shown in figure 2. The
airplane inertia in roll and yaw about the body axis was obtained from
the manufacturer. An inclinationof the principal axis of inertia was
estimated to be 1° below the airplane body axi”s(fig. 1) and the air-
plane inertia about the stability axis was calculatedfor the angle-of-
attack range of these tests (fig. 3). Airplane weight and center-of-
gravity position were determined from pilot reports of the amount of
fuel remaining at the conclusionof each maneuver. Average values for
these quantitiesare 13,400 pounds and 27.5 percent of the mean aero-
dynamic chord, respectively.

The airplane is controlledby a conventionalrudder and by full-
span elevens which function as elevators and ailerons. All control
surfaces are operated by an irreversiblehydraulic system with artifi-
cial feel.

INSTRUMENTATION

Standard NACA recording instrumentationwas used to record airspeed,
altitude, normal acceleration,transverseacceleration,yawing velocity,
rolling velocity, angle of attack, angle of sideslip,eleven position,
and rudder position. All records were synchronizedby a common timer at
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intervals of 0.1 second. An airspeed head, mounted on a boom approxi-
mately 5.4 feet ahead of the airplane nose inlet, measured both static
and total pressure. Airspeed was calibratedby pacer and radar tracking
and is believed to be accurate to ~0.01 Mach number. Control positions
were measured by standard control position transmittersand were recorded
on a Weston galvanometerswhich had a flat response to about 5 cycles per
second. Angle of attack and angle of sideslipwere measured by a vme-
type pickup and were also recorded on a Weston galvanometers.The side-
slip vane pickup and recorder had a flat response to about 5 cycles per
second. Roll angular velocity was recorded with a direct recording
magneticallydamped turnmeterwith a natural frequencyof 20 cycles per
second and a damping ratio of 0.64. Yaw angular velocity was recorded
with the same type instrumentwith a natural frequencyof 9.5 cycles
per second and a damping ratio of 0.67.

TESTS

The test procedure for this investigationconsisted of recording
the airplane response to abrupt rudder pulses. In each instance the
airplane was stabilizedat the desired test speed and altitude and was
disturbedby a rapid pulse of the rudder control. During the disturbance
all controls except the rudder were fixed and followingthe disturbance
all controls were fixed until the airplane returned to stabilizedflight.
Figure 4 shows typical histories of the test maneuver. Tests, with and
without a wing fence, were conducted at 30,000 feet over a Mach nunber
range of 0.52 to 0.g2.

METHODS OF ANALYSIS

With the present trends in designing high-performanceairplanes
it has become apparent that motions other than yaw or sideslip are
important in determiningacceptabledynamic flying qualities. Refer-
ence 4 indicatedthat roll-to-sideslipratio might be important in pilot
rating of the flying qualities of airplanes. In reference 5 the roll-
to-yaw ratio was shown to be useful in determiningairplane stability
derivatives. Consequentlymeasurementsof the amplitudesof roll, yaw,
and sideslip have been made from the recorded transients,and have been
utilized in the analysis to give airplane stabilityderivatives. Ampli-
tude ratios and phase relationshipsof the transient rolling velocity,
yawing velocity, and sideslip angle response to rudder pulses have been
measured from recorded ttie histories. However, inasmuch as the recorded
time histories are relative to the airplanebody axis, they were converted
to stabilityaxis data before pr?cee~ingwith t~e analysis. This was
done by employing the relation $ = ~b COS u - ~ sin a. For the

..
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angle-of-attackrange of these tests it was
the yaw velocity to the new axis, since the
roll velocity was of the order of 1 percent

NACA RM H55E26

necessary to convert only
correctionto sideslip and
or less. The order of the

correctionto the yaw velocity is shown in figure 4.

The procedure for determiningthe amplitude ratios at the airplane
natural frequency is graphical in that the free oscillationrecord is
enclosedby an envelope to establishthe exponentialorder of the motion.
For each maneuver a plot such as figure 5 is obtained from which the

I I+ &,mdiamplitude ratios T ,
+ ~ P

and the time to damp to one-half

amplitude are measured. By careful insepctionof the time history, the
phase relationshipsand frequency of the oscillationare determined. The
measured amplitude ratios and phase angles were converted to displacement
ratios by the usual relationshipsinvolvingundamped natural frequency

and damping

shown in reference 5 that the stability

c could be derived from the airplane
%

(~” + damping angle).

derivatives, C1P9

lateral transient

motions. The computingprocedure involves the use of an initial approxi-
mation for CZ and Czp, the measured natural frequency,damping ratio,

P
and estimates for the derivativesof lesser importance Cnp)

( )
cY~J Czr

to calculate the roll-to-yawamplituderatio and phase angle. The solu-
tion is one of iteration in that CZ

P
and Cz are altered until the

P

calculated amplituderatio and phase angle match those measured experi-
mentally. When the experimentalamplitude ratio and phase angle are
matched, the values of Cn

P
and C , as well as Cl

%“
and Clp, have

P
been determined.

Reference 6 presents a procedure whereby the airplane stability
derivativesmay be determined from the airplane frequency-responsedata
by utilizing a method of least squares. Sample calculationswere mde
using this method as a check of the results of the previous method.

J

m

By means of the Fourier integral F(u) = f(t)e‘itidt the
o

functions of time were transformedinto frequency functions. For this
analysis the integralwas evaluated by an IBM calculatingmachine uti-
lizing the method of reference 7. Briefly, the method of integration
fits a parabola through the data ordinates and evaluates the integral by

CONFIDENTIAL
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multiplying the ordinatesby
ucts evaluates the integral.

CONFIDENTIAL 7

a set of coefficients. Summing these prod-
From these calculationsthe amplitude and

phase angle of the complex componentswere determinedand are presented
as ratios of output to input and the difference in output to input phase
angle.

RESULTS AND DISCllSSION

By using the methods briefly described in the preceding section,
the transient-responsedata have been analyzed to give airplane stability
derivativesand frequency-responsecharacteristics. The transient-
response characteristicsof the airplane at an altitude of 30,000 feet
over a Mach number range of 0.52 to 0.92 are presented in figures 6 to 8.
Figure 6 shows the variationwith Mach nmber of roll-to-yaw,roll-to-
sideslip,and yaw-to-sideslip~Plitude ratio at the natural frequencY.
The addition of the wing fence reduced the roll-to-yawand roll-to-
sideslipratios slightlyat a Mach number of 0.85. The pilot considered
this reduction to be am improvementh the airplane handling qualities
at this test condition. Phase angle relationshipswere also measured
and are shown in figure 7. Only the amplitude and phase angle of roll to
yaw were used in the present analysis (by the method of ref. 5); however,
the amplitudesand phase angles of roll to sideslip and yaw to sideslip
are also presented in figures 6 and 7 to show the trends. Figure 8 shows
the airplane undaped natural frequency and damping ratio for these test
conditions. The measurement of these quantitiesby the graphicalmethod
employed here depends entirely on the airplane response betig lightly
damped.

By the method of reference 5 the more significant
atives CZP> CnP~ C%, ~d Ctp were determined and

figure 9. The value of ~ was determinedby taking
P

stability deriv-
are presented in

the slope of the

transverse accelerationplotted against sideslipduring the airplane’s
free oscillation. The variations of these derivativeswith Mach number
are compared with derivativescalculatedby determiningthe lift-curve
slope of the vertical tail (refs.8 and 9) andby calculating its contri-
bution to the lateral derivativesby the method of reference 10. In
these calculations,the vertical tail srea was taken as the area above
the fuselage. Wing contributionsto the derivativeswere esttiated from
the methods of references 8, 11, and 12. The wing and tail contributions
to the derivativeswere summed without regard for interferenceeffects.
The measured sideslip derivativesare compared to those calculated in
figure 9(a). Experimentalvalues of Cy are approximately25 percent

B
higher than calculated. Thus it appears that the fuselage or perhaps

CONFIDENTIAL
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interferenceeffects contributea considerableamount to this derivative.
Experimental CnD shows a different trend than predicted, increasing

slightly with Mach number whereas the calculatedderivative decreases
with Mach number for this test range. Trends in Cz

P
are similar but

the experimentalderivative is approx-tely one-half the calculated
derivative. It appears, then, that the simple theory used herein is
inadequatein calculatingthese derivatives. Indicateddifferencesmay
be the result of influenceof the wing wake on the vertical tail since
these effects were not considered in the calculations. The experimen-
tal Cnr (fig. 9(b)) is many tties larger than the calculateddamping

in yaw. A similar discrepancywas noted in reference 13, particularly
at high angles of attack, and was attributedto the wing vortex flow
creating sidewash over the rear portion of the fuselage. The sidewash
lags the airplane oscillationand increasesthe tail damping by increasing
the angle of attack of the tail during the oscillation. The experimental
damping in roll Czp (fig. 9(c) ) compares favorablywith the calculated

value.

Since the experimentalderivativesare functions of the estimated
derivativesas well as the measured oscillationcharacteristicsof the
airplane, calculationswere made to indicatethe effect of a nominal
change in the calculatedderivativeson the experimentalderivatives.
Results of these calculationsare given in table II. The maximum effect
of changing Cn by 20 percent appears in Cnr but this change is only

P
of the order of-5 percent. Altering Ctr changed each of the deriva-

tives but the change was negligible. Twenty-percentchange in Cy also
P

altered each of the derivatives,the maximum change of the order of
5 percent occurring in Czp. Thus it appears that fairly accurate experi-

mental derivativescan be obtained with reasonable estimates for the other
derivatives. The estimate of the airplane inertia characteristicsis
also important. For example, the product of inertia estimatewill Wlu-
ence

c+
and Cn . Of course accurate measurementsof the motion smpli-

P
tude ratios and phase angles are necessary. In an attempt to m~~ze
these errors, faired values for these quantitiesfor each Mach number
were used in the calculationprocedure.

Some results of calculatingderivativesby the method of reference 6
are also included in figure 9. The agreementbetween the derivatives
calculatedby the methods of references5 and 6 is consideredgood at the
low Mach number but differencesare apparent at the higher Mach number,
particularly in

c+
and Cz . A measure of the control effectiveness

P
was also obtained from the me~hod of reference 6 and is compared to that
measured in the Ames 40- by 80-foot wind tunnel in figure 10.
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By using the
transient records
Assuming that the

CONFIDENTIAL 9

Fourier transformationthe frequency content of the
has been computed. An example is shown in figure 11.
most significantsource of error is the reduction of

the film record to digital form, error boundaries have been computed as
in reference 14 and are also shown in figure 11. It is evident that at
the higher frequenciesas the frequency content becomes low, (the expected
percentage error becomes high) the phase angles tend to diverge. Thus
accuracy in amplitude assures accuracy in phase angle. This criterion

has been used in terminatingthe fairings of the transfer functions
presented.

Shown in figure 12 is a summary of the frequency-responsecharacter-
istics of the airplane for four Mach numbers 0.>2, 0.63, 0.72, and 0.87
at an altitude of about 30,000 feet. These data show that the natural
frequency and peak amplituderatio of the airplane increasewith increasing

Mach number for this Mach number range.

The results of the transient analysis and frequency-responseanalysis
were compsredby calculatingthe frequency-responsecharacteristicsof
the airplane for the test conditionsof figure 12. Transfer-function
equationsderived from the three lateral equations of motion were used
with the experimentalstabilityderivativesand the calculatedderiva-
tives where experimentalderivativeswere not available. The inertia

characteristicsused were from figure 3. The control effectiveness
parameterswere obtained from tests of the airplane in the Ames 40- by
80-foot wind tunnel (fig. 10). Results of these calculationsat one
test Mach number (0.63)are shown in figure 13. The agreement shown is

,, consideredfairly good. Similar agreement was obtained at the other
test Mach numbers.

CONCLUDINGREMARKS

By analyzing rudder pulse maneuvers with the XF-92A airplane, the
characteristicsof the airplane transient) a~Plane stabilitY deriva-
tives, and transfer functionswere measured. An improvementin the air-

plane handling was noted as a result of the addition of the wing fences.
Stabilityderivativeswere evaluated experimentally,and were also calcu-
lated with fair to poor agreementwith experimentaldata. By using the
experimentallydetermined stabilityderivatives,transfer functions were
calculatedthat agreed reasonablywell with those calculatedby Fourier
transformation.

High-Speed Flight Station,
National Advisory Committee for Aeronautics,

Edwards, Calif., !&y 18, 1955.
.
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TABLEI

PHYSICALCHARACTERISTICSOF XF-92AAIRPLANE

Wing:
Area,si ft . . . . . . . . . .
Span,ft . . . . . . . . . . ●

Airfoilsection. . . . . . . .
Mean aerodynamicchord,ft . .
Aspectratio . . . . . . . . .
Rootchord,ft . . . . . . . .
Tip chord. . . . . . . . . . .
Taperratio. . . . . . . . . .
Sweepback(leadingedge),deg .
Incidence,deg . . . . . . ● .
Dihedral(chordplane),deg . .

Elevens:
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●

✎

✎

✎

●

✎

✎

✎

✎

.

.

.

.
●

●

●

●

✎

✎

✎

.

.

.

●

●

✎

✎

●

✎

✎

✎

✎

✎

●

✎

●

●

●

✎

●

✎

✎

✎

✎

✎

✎

.

.
0

.

●

.

.

.

.

●

.

●

●

. . .
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✎
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●
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.
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.

.

.

.
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13.35
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Area (total,both,aft of hingeline),Sq ft
. .

.
●

●

Span (oneeleven),ft . . . . . . . . . .
Chord(aftof hingeline,const~t excePtat tip),ft
Movement,deg
Elevator:
m*******””””
Down . . . . . . . . . .

Aileron,total . . . . . .

15
5
10

. .

. .
● 0

. .

. .

. .

● *

● .

. .

. .

● .

.

.

.
●

✎

✎

✎

✎

●

✎
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.
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●

✎

✎
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✎

✎
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ft .

HydraulicOperation. .

Verticaltail:
Area,sq ft .
Height,above

Rudder:
Area,sq ft .
span,ft . .
Travel,deg .
Operation. .

Fuselage:
Length,ft .

Powerplant:
Engine . . .
Rating:

. . . . . .0.

. . 75935

.0 u. 50
●

✎

. . . . . .*.
fuselagecenter
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✎

✎
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.* 42.80●

AllisonJ33-A-29withafterburner

. 5,600

. 7,500

15,560
: 11,808

. 25.5

. 29.2

at sea level,
at sealevelwithafterburner,lb

Staticthrust . . . . . . . . .
.

.

.

.

.

●

●

✎

.

.

,

.

.

.
●

✎

✌

.

.

.

.
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Staticthrust

Weight:
Grossweight(560
Emptyweight,lb

gal fuel),lb . . . . . . .
. . . . . . ● *...* ● *

.

.

●

●

.

.

.

.

●

✎

✎

✎

. .

.*

. .

Center-of-gravitylocations:
Grossweight(560gal fuel)}percentM.A.C.
Rnptyweight,percentM.A.C. . . . . . . . .
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TABLE II

EFFECT OF VARYING CERTAIN CALCULATEDDERIVATIVESON THE

EXPERIMENTALLYDETERMINEDDERIVATIVES

Calculatedderivatives Experimentalderivatives

Cy
P cnP Clr c~ c~

P
c

P nr c%

-0.70 -0.001 0.071 -0.0648 -0.144 -0.309 0.330
-.70 -.001 .085 -.0648 -.142 -.308 .329
-.70 -.0012 .071 -.0648 -.144 -.321 .327
-.84 -● 001 .071 -.0622 -.137 -.294 .329

13

.
CONT’IDENTIAL



14 CONFIDENTIAL

3256
+ 36.i

I

AT~-----.z
----

156.1

NACA RM H55E26

-

-----

,----%
.-. .--,

—103.2

+

c:::7

60” -----

— 513.6 4
I

1- 1
375.9 —

—

Comtro

—.

2098

--— -- —--

Figure 1.-

1
drawing of the XF-92A airplane. All
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